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Abstract

The LVQ algorithm is a common method which allows a set of reference vectors for a distance

classi�er to adapt to a given training set� We have developed a similar learning algorithm� LVQ�MM�

which manipulates hyperellipsoidal cluster boundaries as opposed to reference vectors� Regions of the

input feature space are �rst enclosed by ellipsoidal decision boundaries� and then these boundaries are

iteratively modi�ed to reduce classi�cation error� Results obtained by classifying the Iris data set are

provided�

� Introduction

The classi�er developed in this paper combines concepts from both the LVQ ��� and the RCE ��� clas�
si�cation methods� It is similar to the RCE network in that it uses a thresholded distance metric� but the
distance metric is a Mahalanobis distance �	�� This allows the classi�er to partition the pattern space into
hyperellipsoidal decision regions 
giving rise to piecewise quadratic decision boundaries in overlap regions��
The learning algorithm that we develop is similar to the LVQ algorithm� except that it must adjust more
than just the positions of the reference vectors� In this respect our approach is similar to the approach in ���
where parameters other than just the reference vectors are adjusted for the RBF network� We refer to the
learning algorithm developed in this paper as the LVQ�MM algorithm 
LVQ using the Mahalanobis distance
Metric��

� Classi�er Initialization

Our classi�er works as follows� A single class of data is represented by several hyperellipsoidal clusters�
Data falling inside of at least one hyperellipsoid is classi�ed as in�class data� A hyperellipsoid is de�ned
by a mean vector� �� a covariance matrix 
symmetric and positive de�nite�� � and an e�ective radius� d�
The mean vector determines the location of the hyperellipsoid� while the covariance matrix determines its
shape and orientation� The squared Mahalanobis distance �	� is used to determine if a vector x lies inside or
outside of a given hyperellipsoid� Vectors lying inside of a hyperellipsoid satisfy�


x � ��T��
x� �� � d 
��

An initial clustering of the training data for each class is needed as the basis for this classi�er� There
are numerous ways in which this might be accomplished� We use the method proposed in ��� which suggests
using the k�means clustering algorithm �	� followed by a cluster merging process� After clusters have been
initialized in this way� e�ective radii are selected for each cluster in the set� We choose the e�ective radius
d for each cluster so that under the assumption that the data is gaussian in nature� P� of the data will

�



fall inside the boundary 
typically P������ For an N �dimensional problem� the distribution of the squared
Mahalanobis distances to each of the vectors within a given cluster is a �� distribution with N degrees of
freedom� If pattern vectors consist of �� features� for example� then an e�ective cluster radius of 	��� would
cause the hyperellipsoidal boundaries to contain ��� of the data�

� Classi�er Adaptation

After classi�er initialization� each class of data is represented by a number of hyperellipsoidal clusters
in the pattern space� An adaptive training algorithm is now employed to reduce classi�cation error in
areas of known overlap between di�erent classes� During adaptation� each hyperellipsoid in the classi�er
will maintain its original orientation� although its position and shape will be modi�ed� The algorithm that
we use is similar to the LVQ algorithm� and thus is referred to as the LVQ�MM algorithm 
LVQ with the
Mahalanobis distance Metric��

Assume that we have a hyperellipsoidal decision boundary� and a new vector which we would like to
include within the in�class data region 
see Figure ��� We are only going to allow the mean vector � and the
eigenvalues of the covariance matrix  to change� This means that the orientation of the cluster will remain
�xed� although its position and shape may be modi�ed� The cluster will be modi�ed in such a way that
the following are true� 
�� the new point� xn� lies on the new cluster boundary� 
�� the original boundary
point lying on the opposite side of the hyperellipsoid from xn remains on the cluster boundary� and 
	� the
eigenvalues of  are modi�ed in such a way that the hyperellipsoid is only stretched �towards� xn�
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Figure �� Modifying a Hyperellipsoidal Boundary

The new mean vector for the cluster will lie directly between xn and the point lying opposite it on the
hyperellipsoidal boundary� and is given by�

�
n
�

�

�

��
� �

r
d

mn

�
��

�
��

r
d

mn

�
xn

�

��

After computing �
n
� we need to modify � In doing so� we are essentially going to stretch the decision

boundary towards the new point� xn� Note that if the new point lies along one of the hyperellipsoidal axes�
that only one eigenvalue for  will need to be changed� Otherwise� all 
or at least several� eigenvalues will
need to be modi�ed� For simplicity� we will restrict our attention to modifying the inverse of � Let us
decompose �� as follows�

�� � M�MT 
	�

where M is the orthonormal eigenvector matrix for ��� and � is the diagonal eigenvalue matrix� To stretch
the cluster we will modify the eigenvalues of ��� and keep the eigenvectors �xed� Thus we wish to �nd a
new inverse covariance matrix�

��n � M���M
T 
��

where the �stretch matrix�� ��� takes on the form�

�� �
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� � ��p � � � � �
� � � ��p � � � �
� � � � � � � � � � � �
� � � � � � � �Np
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Figure �� A Two�Dimensional System Before Adaptation

The parameter p determines the total stretch� and the parameters �i determine the percentage stretch in
the direction of the ith principal component� The �i satisfy the following constraints�

� � �i � ��
NX
i��

�i � � 
��

Our goal is to determine the parameters p and �i so that the hyperellipsoidal boundary is moved to xn�


xn � �
n
�T��n 
xn � �

n
� � 
xn � �

n
�TM���M

T 
xn � �
n
� � d 
��

Let us de�ne a new vector z to be�

z � ����MT 
xn � �
n
� 
��

The components of this vector� zi� i � �� �� ����N � represent the strength of the projection of xn onto the
N principal components� With this� 
�� can be rewritten as�

zT��z �
NX
i��

z�i 
� � �ip� � d 
��

The percentages� �i� are chosen to be equal to the relative magnitude of the projection of xn onto each
of the principle components�

�i �
j zi jPN

j�� j zj j

���

It is easy to verify that this choice for �i satis�es 
��� Substituting 
��� into 
�� and solving for p we get�

p � 
d� �mn�

PN

i�� j zi jPN

i�� j zi j
�


���

where �mn is the squared Mahalanobis distance to xn using the original covariance matrix  and our new
mean vector �

n
�

In summary� the new inverse covariance matrix is given by 
�� where the components of �� are computed
using 
��� 
���� and 
����

The cluster modi�cation method discussed above provides a foundation for the classi�er adaptation
algorithm� Using the cluster modi�cation technique to move clusters �toward� and �away from� training
vectors� this algorithm will attempt to minimize classi�cation error in regions of known overlap between
classes� We will restrict our attention to modifying clusters for a single class of data only� This process is
then used independently for each class of data�

	



� The LVQ�MM Algorithm

Consider the two�dimensional problem shown in Figure �� The classi�er has been initialized using the in�
class training data� and consists of three hyperellipsoids in the input space� Notice that based on the training
data available to the classi�er� there is no overlap in the region �below� the current hyperellipsoids� The only
con�icting areas lie on the upper portion of the closed decision region� This suggests that better classi�er
performance can be achieved by allowing the decision region to include all in�class vectors lying below the
current set� and by moving the upper boundary of the classi�er to a position minimizing misclassi�cations
in that area�

A single step in the LVQ�MM algorithm will basically work as follows� Select a random vector from the
training data which is currently misclassi�ed 
correctly classi�ed samples do not a�ect the classi�er train�
ing�� Using the cluster adaptation equations previously derived� move one of the hyperellipsoidal boundaries
either toward or away from this vector� depending on its class membership� Note that as the cluster adap�
tation equations currently stand� this step will always cause the current vector to fall directly on the new
hyperellipsoidal boundary�
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New Vector

. . .
Cluster 1
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New Vector

.

.

.

CASE 1 CASE 2

Figure 	� Selecting Desired Boundary

The question to be addressed now is� �Which of the hyperellipsoids should be modi�ed�� Consider the
two cases illustrated in Figure 	� In Case �� we want to modify cluster � to include the new vector even
though the mean vector for cluster � is farther away from the new vector than the mean vector for cluster
� in terms of Euclidean distance� In terms of Mahalanobis distance� however� the opposite is true� In
Case �� on the other hand� the roles are reversed� We want to modify cluster � to include the new vector�
The Euclidean distance to cluster � is smaller than the Euclidean distance to cluster �� and in terms of
Mahalanobis distance� cluster � is closer� Clearly� the cluster to be modi�ed should be the cluster whose
boundary is closest to the new vector 
in terms of Euclidean distance�� It can be shown that the distance
from the boundary to the new vector is given by

dist � j
��

r
d

m
�j � kxn � �k 
���

where d is the e�ective cluster radius� and m is the squared Mahalanobis distance to the new vector� The
adaptation loop� then� works as follows�

LVQ�MM ALGORITHM


�� Select a training vector that is misclassi�ed

�� Determine which cluster to modify

	� Modify mean using 
��

�� Modify inverse covariance matrix using 
��

This algorithm is typically run for several passes through the training data�

�



� Experimental Results

The Iris data set� ��� was used by R� A� Fisher in ��	� to discuss the use of linear discriminant functions�
The set contains �� four�dimensional vectors from each of three di�erent classes of �owers� Iris setosa� Iris
versicolor� and Iris virginica� The Iris setosa data is linearly separable from the the other two classes� but
the Iris versicolor and Iris virginica data are not linearly separable from one another�

Since the Iris setosa data is easily separated from the other two classes of data� we directed our work
towards identifying Iris versicolor and Iris virginica data� For a given class of data 
Iris versicolor or Iris
virginica� containing �� sample vectors� �� were selected as training vectors and the other �� were used
as a test set to determine how well the classi�er generalizes to new data� Because discriminating between
these classes is highly dependent upon the training sets used� ten di�erent training test sets were chosen at
random� and the results provided re�ect average classi�er performance�

As a basis for comparison we trained a linear classi�er to discriminate between Iris versicolor and Iris
virginica data� The perceptron learning algorithm �	� was used� The overall results of the linear classi�cation
are shown in Table ��

Correct Incorrect
Training Data ����� ����
Test Data ����� ����

Table �� Results Using the Perceptron Learning Algorithm

Using a linear classi�er for this problem seems to work fairly well� When presented with Iris setosa data�
however� the classi�er will respond as if it were presented with Iris versicolor data� We next applied our our
one�class classi�cation scheme to this data� Ignoring the Iris setosa data� we attempted to build a one�class
classi�er for each of the other two sets of data� Because the data is known to be unimodal� a single cluster

�� � was estimated for each class� An e�ective cluster radius 
d� of ���� was chosen� For a four�dimensional
problem with a gaussian distribution� this e�ective radius re�ects a con�dence interval containing ����� of
the data� Given a single cluster� then� classi�cation results were computed for both the training data and
the test data� In order to improve the classi�er performance� the LVQ�MM algorithm was run using both
the in�class and out�of�class training data� The adaptation process was halted after �� passes through the
training data�

Using the single cluster for the Iris versicolor training data 
before adaptation� classi�ed nearly all of the
in�class data correctly 
see Table ��� Out�of�class data 
Iris virginica�� however� were frequently incorrectly
classi�ed as in�class 
Iris versicolor� data� Results for rejecting out�of�class data were signi�cantly improved
after the LVQ�MM algorithm was employed� After this adaptation process� only ���� of all training data
was classi�ed incorrectly� while ���� of all test data was classi�ed incorrectly� Unlike the results obtained
with the linear classi�er� all �� vectors from the Iris setosa data were rejected by this classi�er both before
and after adaptation� Similar results were obtained using the Iris virginica classi�er 
see Table 	��

Before Adaptation After Adaptation
In�Class Out�Of�Class In�Class Out�Of�Class

Training Data ������ ����� ����� �����
Test Data ����� ����� ����� �����

Table �� Correct Classi�cations Using Versicolor One�Class Classi�er

The LVQ�MM learning algorithm attempts to move the decision boundary away from the out�of�class
data which it misclassi�es� The result is that more data overall is rejected when using the adapted classi�er

�We would like to acknowledge the assistance received by using the UCI Repository Of Machine Learning Databases and

Domain Theories�
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Before Adaptation After Adaptation
In�Class Out�Of�Class In�Class Out�Of�Class

Training Data ������ ����� �	��� �����
Test Data ����� ����� ����� �	���

Table 	� Correct Classi�cations Using Virginica One�Class Classi�er

as compared to the amount of data rejected before classi�er adaptation� Table � shows the percentage of Iris
versicolor and Iris virginica data which was accepted and rejected by the two classi�ers� Very little data falls
into the wrong cluster� but there is a substantial amount of data that falls into both clusters before classi�er
adaptation� After adaptation� the overlap region has been greatly reduced� and as a result the number of
vectors rejected from both classi�ers has increased�

Before Adaptation After Adaptation
Right Wrong Both Rejected Right Wrong Both Rejected

Training Data ����� ���� ����� ���� ����� ���� ���� ����
Test Data ����� ���� ����� 	��� ����� 	��� ���� �����

Table �� Overview of Data Classi�cations

The one�class classi�ers worked well in the sense that they always rejected data that was dissimilar from
the training data used for classi�er design� The Iris setosa data� which is misclassi�ed when using the
linear classi�er� is correctly classi�ed as �out�of�class data� when using the one�class classi�cation approach�
As for the discrimination capability of the classi�er� the adapted Iris versicolor one�class classi�er actually
performed better than the linear classi�er did for these data sets� The Iris virginica classi�er� on the other
hand� performed slightly worse than the linear classi�er�

� Conclusions

Statistical methods of pattern recognition have been used extensively for many years� Using the method
presented in this paper decision boundaries can be manipulated to reduce classi�cation error� Our method
has the combined advantage of minimizing classi�cation error between classes for which training data is
available� while at the same time rejecting patterns from other classes which are dissimilar to the training
data�
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